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A bit of Perspective 

It’s all in the head 

Transducer theory without psychoacoustics=rubbish 



A bit of Perspective 

The parts most covered in mystique are in fact the utilitarian 

ones: 

• Amplification 

• Conversion 

• Transmission 

 

 

 

 

 

 

 

 

• Only effects gear should modify the signal audibly 

Amplification 

Conversion 

Transmission 

 

Effects 
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Revealed Preference: Euphonic or Transparent? 

How Do You Listen? 

1. “Preference Test”: compare to reference product 
• Design cycle converges on “best sounding”. 

 

2. “Bypass Test”: compare output to input 
• Design cycle converges on “maximally transparent”. 

 

 

Note different meanings of “transparent” 
• Audiophile: Barrage of fine detail 

• Pro: no audible difference between in and out. 



Revealed Preference: Euphonic or Transparent? 

Reference Listening Fallacies: Yeah but… 

 

• “I’m listening for the most neutral sound, not for the 

sound I like best” 
• Result will be what you think is most neutral… 

 …Not what you really like best 

 …Not what is truly transparent 

 

• “I go to live concerts regularly to recalibrate my ears” 
• No actual reproduction takes place (audio=illusion). 

• Your design will be specialised to make your favourite recordings 

sound realistic 

}  Worst of both worlds!!! 

Next on: Unhappy about Negative Feedback 



(When) Does Negative Feedback Sound Bad? 

Example non-linearity: pure second order function 

 



(When) Does Negative Feedback Sound Bad? 

• Feedback results in “intermediate” shaped transfer 

(function has a square root in it) 

 



(When) Does Negative Feedback Sound Bad? 

• 2nd harmonic drops. 

• New harmonics appear, including odd ones! 

 

 



(When) Does Negative Feedback Sound Bad? 



(When) Does Negative Feedback Sound Bad? 



Negative Feedback Guidelines (1) 

 

• Practical open-loop errors are too large for guaranteed 

transparency. 

• Feedback is the most effective tool for reducing errors 

• Moderate loop gain does more harm than good in 

realistic circuits. 

• Improved open-loop linearity reduces NFB-related 

products by a greater extent. 

 

Don’t Be a Wimp. Use NFB and use tons of it. 

Next on: Op Amp Theory 



Hands-On Op Amp Theory 

This is a voltage amplifier… 



Hands-On Op Amp Theory 

…This is not! 



Hands-On Op Amp Theory 



Hands-On Op Amp Theory 

Transconductance Amplifiers 

• Common Emitter Circuit 
• gm=IE/26mV 

• Moderate Zin 

• High Zout 

 

 

• Common Source Circuit 
• gm=device and current dependent 

• Very high Zin 

• High Zout 



Hands-On Op Amp Theory 

Current Amplifiers 
• Common Emitter Circuit 

• AI=hfe 

• moderate Zin 

• high Zout 

 

• Common Base Circuit (=cascode) 
• AI≈1 

• low Zin 

• Very high Zout (Ccb dominates) 

 

• Current Mirror 
• AI≈1 

• low Zin 

• High Zout 

 



Hands-On Op Amp Theory 

Transimpedance Amplifiers (I/V converters) 

• No fundamental circuit, except perhaps: 
• Zin=Zout=“Low” only 

if source and load are 

high-Z 

 

 

• Feedback type I/V 
• Zin≈1/gm 

• Zout≈1/gm 



Hands-On Op Amp Theory 

Voltage Amplifiers 

• Only one truly fundamental voltage amplifier: 
• Very High Zin 

• Low Zout 

 

 

 

• Follower = transcond. amp with voltage feedback. 
• High Zin 

• Zout=1/gm 

 

 

• Loop Gain=gm·ZL 



Hands-On Op Amp Theory 



Hands-On Op Amp Theory 



Hands-On Op Amp Theory 



Hands-On Op Amp Theory 

An op amp is an integrator 
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Hands-On Op Amp Theory 

An op amp is an integrator 

This is not a slow op amp 

This is not a faster op amp 



Negative Feedback Guidelines (2) 

Impact of integrating character on sound  

• Loop gain drops 20dB/decade 
Closed-loop THD increases with frequency 

Spectral distribution shifts towards higher frequencies 

 

• Euphony In Action! Rising THD vs frequency profile has 

a recognisable sonic signature. 
• HF is only mildly affected except in very bad cases. 

• Bottom end becomes extremely “tight”, “powerful” and “controlled”. 

• Often attributed to “huge current reserve” of behemoth power stage. 

Really caused by HF THD of sluggish amp. 

• Propagates “Damping Factor” myth. 



Negative Feedback Guidelines (2) 

Not scientifically established but useful nonetheless: 

• When you’re strapped for loop gain at 20kHz, limit low-

frequency loop gain to the same value. 

• THD becomes higher but constant throughout the audio 

band. 

• Colouration becomes less obvious and less annoying. 

 

Next on: PSRR 



Hands-On Op Amp Theory: The PSRR Gotcha 

Hang on… What’s the output voltage referring to? 



Hands-On Op Amp Theory: The PSRR Gotcha 

Here!!! 



Hands-On Op Amp Theory: The PSRR Gotcha 

So really... 

CCinout VdtVGBW2V  



Hands-On Op Amp Theory: The PSRR Gotcha 

The PSRR Gotcha: 

• One rail is output reference 

• PSRR is essentially ZERO 

• Measured PSRR = AL≈AV,OL-AV,CL 

• PSRR in typical audio app is not astronomical 



Hands-On Op Amp Theory: PSRR fixes 

“Folded Cascode” Amp  



Hands-On Op Amp Theory: PSRR fixes 

“Folded Cascode” Amp  

• Pro: 
• Output Reference is Ground 

• Con 
• Buffer impedance is critical 

• Bias sources add noise 

• Non-linear circuit 

capacitance adds 

to integration cap 

 



Hands-On Op Amp Theory: PSRR fixes 

Cascoding the current junction 



Hands-On Op Amp Theory: PSRR fixes 

Cascoding the current junction 

• Pro: 
• Reference is made explicit 

• Other advantages of feedback transimp stage remain 

• Con: 
• Bias sources add noise to Transcond stage output current 



Hands-On Op Amp Theory: CM distortion 

Manifestation 

• 20dB/dec THD increase 

 

Causes 

• Non-linear input capacitance 
• Dominant problem 

• Transistor mismatch 
• Also limits DC PSRR 

• Load mismatch 
• All but negligible effect 



Hands-On Op Amp Theory: CM distortion 

Circuit sensitivity 

• All 3 effects happen in noninverting mode 

• None happen in inverting mode 

 



Hands-On Op Amp Theory: CM distortion 

Always Invert? 

• Guaranteed fix 

• Useless in low-noise circuits. 

 

Impedance Matching 

• Eliminates dominant cause 

• Source impedance not always known 

• Noise penalty 



Hands-On Op Amp Theory: CM distortion 

Input Stage Improvements 

• Boot strapped cascode 



Hands-On Op Amp Theory: CM distortion 

Input Stage Improvements 

• Boot strapped folded cascode 



Hands-On Op Amp Theory: Going discrete? 

Reasons for going Discrete 

• Need more headroom 

• Trade typical IC compromises for better performance 
• Input Common Mode range 

• Low-supply operation 

• Lack of 6th connection 

 

Not reasons for going Discrete 

• “Discrete is better” 
• Come off it, IC technology is mature 

• Discrete copy of IC op amp has the same drawbacks 

Next on: Minimalism 



Minimalist Design, or maybe not? 

Basic premise of minimalism 

• “Any component a signal passes through, degrades it” 
• Underlying assumption: the whole is always the sum of the parts 

 

• Associated philosophy: “zero feedback”  

 

 

 

 

...do I sense a self-fulfilling prophesy coming? 

 



Minimalist Design, or maybe not? 

Source of the confusion: inaccurate wording. 

• Let’s correct this: 

“Any process a signal goes through, degrades it” 

 

• A bunch of parts enclosed in a feedback loop = ONE 

process. 
• Result is not “sum of parts”. 

• Neither mathematically, nor sonically. 

 

• Can a process be improved by adding parts? Yes it can! 



Minimalist Design, or maybe not? 

Example 1: Cascode 

 

 

 

 

 

 

 

 

• Cascoding is also accepted by minimalists 
• Undercuts the “sum of parts” premise 



Minimalist Design, or maybe not? 

Example 2: 4th order low-pass filter. 

• First try: Minimalist, only one op amp 



Minimalist Design, or maybe not? 

Problem: Noise gain is high 

• Noise outstrips DAC’s 

• Op amp is starved of loop gain 

• Frequency response deviates noticeably from ideal 

• THD comes out of noise floor 
• Worse than 2 separate 2nd order sections 

• Sounds worse too... 



Minimalist Design, or maybe not? 

Second try: Two-op amp filter w/ global feedback 



Minimalist Design, or maybe not? 

Second try: Two-op amp single stage filter 

• Complexity doubles 

• Either stage adds loop gain to the other. 

• THD is lower than a single stage (and unmeasurable) 

• Converter chain is now audibly transparent 

 

 

 

Next on: Digital Filters 



Digital Filters in AD/DA Converters  

Sampling Theory’s Basic Promise 

 

 

 

 

 

 

 

 A sampler flanked by low-pass filters with sufficient 

attenuation at fs/2 does exactly the same as the low-

pass filters alone. 



Digital Filters in AD/DA Converters 

The TOA Cue Fallacy 

 

• “The ear can detect a 2us Time-Of-Arrival difference” 
• Correct! (0.2° lateral shift in stereo image) 

 

• “So we need 500kHz sampling” 
• Uhhh not quite... 

 



Digital Filters in AD/DA Converters 

The Promise in Practice 



Digital Filters in AD/DA Converters 

The Promise in Practice 



Digital Filters in AD/DA Converters 

The Promise in Practice 



Digital Filters in AD/DA Converters 

The Promise in Practice 



Digital Filters in AD/DA Converters 

The Promise in Practice 



Digital Filters in AD/DA Converters 

The Nonoversampling Fallacy 

• “Digital Square Wave” test signal looks like this: 

 



Digital Filters in AD/DA Converters 

The Nonoversampling Fallacy 

• After “NOS conversion” (=zero order hold) we get: 

 



Digital Filters in AD/DA Converters 

The Nonoversampling Fallacy 

• Now insert a half-sample delay: 

 



Digital Filters in AD/DA Converters 

The Nonoversampling Fallacy 

• Impulse Response becomes time-variant 

• Fallacy was facilitated by the “Digital Squarewave” 

signals from test kit and test discs. 

 



Digital Filters in AD/DA Converters 

• The “Digital Step Function” reconstructs like this: 

 



Digital Filters in AD/DA Converters 

• Contrast with an actual band-limited step function 

 



Digital Filters in AD/DA Converters 

• Compare the spectra 

 

 

 

 

 

 

 

 

  

 Dear test equipment designers: please 

provide a “true square wave” of arbitrary 

frequency 



NOS Rundown 

• NOS DAC may sound OK 
• We really don’t notice much beyond 20k... 

 

• NOS DAC sometimes sounds better than same DAC 

with digital filter 
• DAC in these experiments is invariably ladder type 

• Glitch contribution goes up with sampling rate 

• Latch signal passes through filter chip (increased clock jitter) 

 

• None relate to impulse response 



Digital Filters in AD/DA Converters 

• Antialias filtering in contemporary ADC’s is mostly done 

digitally, in a “decimation chain” 



Digital Filters in AD/DA Converters 

Gabarith for 8fs -> 4fs filter stage 



Digital Filters in AD/DA Converters 

Gabarith for 4fs -> 2fs filter stage 



Digital Filters in AD/DA Converters 

A perfect candidate: The Half-Band filter 

• Magnitude response is chosen symmetrical round 0.25fs 

and 0.5. 
• Stop band = 0.5fs - pass band 

• Stop band rejection = stop band ripple 

 



Digital Filters in AD/DA Converters 

Half-Band filter, Magnitude Response 

 

 



Digital Filters in AD/DA Converters 

Half-Band filter, coefficients 

 

 



Digital Filters: Design Compromises 

Gabarith for 2fs -> 1fs filter stage. 

 

 

 

 

 

 

 

 

 

Oops. 



Digital Filters: Design Compromises 

Typical final stage in commercial converters 

 

 

 

 

 

 

 

 

 

 

Cut & dried breach of Nyquist criterion! 



Digital Filters: Design Compromises 

 

 

 

 

 

   0.4535*44.100kHz=20.000kHz 



Digital Filters: Design Compromises 

Result 

• Band between 0.4535fs and 0.5565fs suffers aliasing. 

• Only 12dB of attenuation at fs/2. Signals with significant 

energy near fs/2 are worst affected. 

 

 

 

 

 

• Next slide: demonstration: fs=44.1k. Square wave of 

f≈3150Hz is fed into ADC. 7th harmonic aliases. 

 



Digital Filters: Design Compromises 

 

 

 

 

 

 

To human ears: 

• TOA cues are affected for signals with significant HF. 
• Sibilants in choral music, wind and string instruments smear across 

the whole stereo image.  

• Nearly no impact for panpot stereo. 
• Alias components are in phase across channels 



Digital Filters: Design Compromises 

How to Salvage a Burnt Steak  

• Cut off the blackened bits. 

 



Digital Filters: Design Compromises 

Applicability of Steak-Salvaging filter. 

• Use once in the entire record-replay chain 
• The rest of the chain may keep using halfbands. 

 

• Check by ear 
• The 44.1kHz version has a sonic signature. 

• Weigh against improved imaging. 

 



Digital Filters: Design Compromises 

The Equiripple Filter 

• “Just Enough” attenuation = minimum number of coefficients. 

• Windowed Sinc filters roll off further inside the stop band. 

Unnecessary attenuation increases length. 

• Example: Equiripple, 75 taps. Windowed, 95 taps. 

 



Digital Filters: Design Compromises 

In a halfband filter, ripple and attenuation are linked 
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Digital Filters: Design Compromises 

 Ripples are equal in amplitude and nearly equally 

spaced. Spacing ≈ 2/(#taps+1) 



Digital Filters: Design Compromises 

 Let’s define another linear-phase filter with nearly the 

same in-band response 



Digital Filters: Design Compromises 

Impulse response of that filter (exaggerated): 

 

 

 

 

 

 

 

• Constant in-band ripple equates to echos at the ends of 

the filter. 

• Amplitude of echos = stop band attenuation – 6dB 

• Post-echo is certainly masked. Pre-echo possibly not. 



Digital Filters: Design Compromises 

Close-up of ripple of windowed sinc filter 



Digital Filters: Design Compromises 

Compare 2 halfband filters at 95 taps 



Digital Filters: Design Compromises 

Import on “digiphobia” 

• Classic argument against digital: “pre-ringing” 
• Little serious evidence of audibility of pre-ringing outside the audio 

band exists. 

• Looks like a red herring 

 

• 2 common impementation problems were identified 
• Aliasing and Pre-Echo 

• Audible deficiencies are linked to compromising. 

• Solved by better adhering to theory, not deviating further. 

 

• Pre-ringing hypothesis is not needed!  
• You Hear What You Hear but it’s Not What You Think. 

Next on: ASRC 



Testing the Pre-Ringing Hypothesis 

Testing audibility of brick wall filtering 

• Use a 96kHz or 192kHz recording. 

• Slice off 0.4535-0.5fs area. 

• Test the following filters (never decimate): 
• 20kHz sharp-rolloff 

• 20kHz slow-rolloff 

• 40kHz sharp-rolloff 

 



Testing the Pre-Ringing Hypothesis 

Effect of Slow-Roll Filter after the fact... 

 



Testing the Pre-Ringing Hypothesis 

...reverses effect of sharp rolloff filters 

 

 

 

 

 

 

 

 

(example: standard 96kHz AD/DA with slow LPF inserted) 



Testing the Pre-Ringing Hypothesis 

Should we put Slow-Rolloff filters in IC’s? 

• NO! Compounded SR filters amount to a brick wall. 

• Only brick-wall filters are “idempotent”. 

• Use brick-wall filters throughout and shape response 

only once. 

 



Testing the Pre-Ringing Hypothesis 

How About The Slow-Rolloff Filters in Chip XYZ? 

• Intended to reduce latency, NOT improve sound quality 

 

 

 

 

 

 

 

 



Testing the Pre-Ringing Hypothesis 

The Phase-Optimised Filter 

• Reduces pre-ringing at the expense of post-ringing 

 

 

 

 

 

 

 

• Magnitude response is maintained 

• Cost-effective implementation (IIR+short FIR at fsout) 

• Reduces latency with minimal loss of sound quality 



Testing the Pre-Ringing Hypothesis 

Are phase-optimised filters a good thing? 

• YES. Much better tradeoff between audio performance 

and latency. 

 

Should phase-optimised filters be standard? 

• NO. One pass may be inaudible but 2 passes? 10? 

• “Improved sound quality” claim is based on pre-ringing 

hypothesis. 

 



Asynchronous SRC: The Fine Print 

What SRC does 

• Reconstruct waveform, resample at new rate 

• Done by interpolation 



Asynchronous SRC: The Fine Print 

Basic Concept of Asynchronous Sample Rate Conversion 

 

 

 

 

 

 

 

 

 

• When fsin/fsout ratio indication is correct, interpolator will read FIFO 

exactly as often as it is written. 

• fsin/fsout ratio is updated to keep FIFO half full. 

• Hardware implementations have separate Ratio Estimators 

Ratio Estimator 



Asynchronous SRC: The Fine Print 

Basic problem of ASRC: measurement accuracy 

• Accuracy = sampling rate of Ratio Estimator 



Asynchronous SRC: The Fine Print 

Basic problem of ASRC: measurement accuracy 

• Accuracy = sampling rate of Ratio Estimator 



Asynchronous SRC: The Fine Print 

 

 

 

 

 

Spectral makeup 

of “output jitter” 



Asynchronous SRC: The Fine Print 

Example IC ASRC 

• Output rate = 47.999kHz 

• Input rate = 48kHz (blue), 48.025kHz (red) 

• Separate independent clock osc drives SRC process 



Asynchronous SRC: The Fine Print 

Example IC ASRC 

• Output rate = 47.999kHz. Input rate = 48kHz (blue) 

• Separate independent clock osc drives SRC process. 

Oscillator can temperature = 25°C 40°C 55°C 



Asynchronous SRC: The Fine Print 

The Headline 

• ASRC’s greatly attenuate input jitter... 
 
The Fine Print 

• ...but add a lot of their own before doing so! 

• And encode the remainder in the data! 
• Signal degradation is irreversible 

• ASRC is not a fully digital process! 
• Frequency is a physical quantity = analogue  

• Ratio between independent oscillators = analogue 

 



Asynchronous SRC: The Fine Print 

Good Uses for ASRC 

• Synchronisation in a mixed-rate environment 

• Jitter reduction in DAC. Run the DAC at an odd rate! 

 

Not Good uses for ASRC 

• Blanket synchronisation issue solver 

• Mastering (use synchronous or software based SRC e.g. 

Barbabatch) 

 

Utterly Repugnant uses for ASRC 

• Jitter removal device in one-box players 

• “Upsampler” in consumer devices 
Next on: Digital Loudspeakers 



DSP Filters For Loudspeakers 

The Siren Song 

• Perfect amplitude/phase/impulse response 

• From any speaker 
• Measure speaker response, invert, apply FIR, presto! 

• Ultra-steep, linear-phase cross-over 

 

The standard approach 

• Impulse inversion method. 

• Corrects all linear distortions, including echo’s. 



DSP Filters For Loudspeakers 

OK, let’s try this! 

• Test Mule: 
• 2x5” woofer (Vifa OEM) 

• 1” tweeter (Morel) 

• Classic MTM arrangement 

 



DSP Filters For Loudspeakers 

On-Axis Response 



DSP Filters For Loudspeakers 

30° Horizontal Off-Axis Response 

 

 

 

 

 

 

 

 

 

Note: some peaks/dips shift frequency! 



DSP Filters For Loudspeakers 

30° Vertical Off-Axis Response 

 

 

 

 

 

 

 

 

• Tremendous comb filter in LF response 

• Other peaks/dips shift frequency! 



DSP Filters For Loudspeakers 

Before we’ve even started... 

• Worst irregularities are diffractions 
• Cabinet edges and woofer cones 

 

• Virtual sources are far from drivers 
• Reflections change with listening position 

• Subverts response correction off axis 

 

 



DSP Filters For Loudspeakers 

Mis-correction of reflections and diffractions 



DSP Filters For Loudspeakers 

Corrected and Filtered HF response (on axis) 



DSP Filters For Loudspeakers 

“Corrected” and Filtered HF response (30°H off axis) 

 



DSP Filters For Loudspeakers 

“Corrected” and Filtered HF response (30°V off axis) 

 



DSP Filters For Loudspeakers 

Sum Response (on axis) 



DSP Filters For Loudspeakers 

Sum Response (30°H off axis) 



DSP Filters For Loudspeakers 

Sum Response (30°V off axis) 

 



DSP Filters For Loudspeakers 

Impulse Response (on axis) 

 



DSP Filters For Loudspeakers 

Impulse Response (30°H off axis) 

 



DSP Filters For Loudspeakers 

Impulse Response (30°H off axis, Y zoom) 

 



DSP Filters For Loudspeakers 

Impulse Response (30°V off axis) 

 



DSP Filters For Loudspeakers 

Impulse Response (30°V off axis, ultra-steep filter) 

 



DSP Filters For Loudspeakers 

Observations 

• Heavy correction exacerbates acoustic problems 

• Steep, linear-phase filtering causes pre-ringing in off-

axis response 

• Linear-phase target response invites pre-echos 

 

Brute-force correction produces ugly, smeared sound 

 



DSP Filters For Loudspeakers 

Sensible approach to correction: 

 

• Don’t Shave Off The Hair. It’ll Grow Back. 

 

• Limit scope of correction to a few periods 
 

The subtler the correction, the wider the listening angle 

in which it still makes some sense. 

 



DSP Filters For Loudspeakers 

Even better approach to correction: manually! 

 

• Forget FIR 
 

• Of each bump and trough, find cause 
• If the driver is the source: correct ruthlessly 

• If the source is elsewhere: EQ gently 

 

• Know your acoustics... 



DSP Filters For Loudspeakers 

Cross-over Filtering 

 

• Use shallow slopes 

 

• Target minimum phase sum 
• We really don’t want linear phase HPF! 

• We only care about the sum, not the individual drivers. 

 

• (...) 

 



DSP Filters For Loudspeakers 

Conclusion 

• DSP does not exonerate you from doing your acoustical 

homework 
• You might even need to work harder 

• Some acoustic concepts really are “broken” 

• Automated design procedure = pipe dream 

• Impulse inversion method is naïve 

Next on: Class D EMI 



Class D and EMI 

Low-frequency EMI: Carrier and low harmonics. 

• Close match with theory. 

• Ripple cancelling possible. 

• Not an EMI issue except for long cables 

• Not a tweeter issue (come off it!) 

 



Class D and EMI 

Common and Differential Mode in H-Bridge Class D 

• “Class AD”. Carriers and modulation are out of phase 

 

 

 

 

 

 

 

 

Note: Common-mode is what radiates off cables. 



Class D and EMI 

“Class BD”. 

• Carriers are in phase. Modulation is out of phase. 

 

 

 

 

 

 

 

 

HF across load is reduced but CM increases. 



Class D and EMI 

Half bridge vs Full Bridge, Class AD vs BD 

• Half-bridge 
• Can’t cancel either CM or DM 

• Common-mode is half of differential mode 

• AD 
• Common-mode voltage theoretically 0 

• Differential mode same as half bridge 

• BD 
• Differential mode cancels at low modulation... 

...but that was not really a problem anyway. 

• Common-mode voltage same as half bridge 



Class D and EMI 

High-Frequency EMI: Leaking switching transients 

• Theoretical modeling is useless. 
• Capacitors become inductive 

• Inductors become capacitive 

• PCB becomes jumble of L’s and C’s. 

• No tricks. Only good hardware design helps. 

• Direct EMI problem under all circumstances. 

 



Class D and EMI 

Sensitive item 1: The capacitor. 

• Myth of the “Low Inductance Capacitor”. 

(An Audiophile Favourite) 
• All modern film caps have sprayed end contacts. 

• Inductance is determined by geometry only (mostly size). 

 

 

 

 

 

 

 

Period. 

Bad. Good. 



Class D and EMI 

Sensitive item 2: The inductor. 

• Stray fields out of toroids 

 

 

 

 

 

 

 

 

 

• Upright mounted toroids are worst. 



Class D and EMI 

Sensitive item 2: The inductor. 

• Beware of indirect Capacitive Coupling through Core 
• Tight windings are better 

magnetically but worse  

electrostatically. 

• No external electrostatic shield: 

Capacitive coupling to chassis 

etc. can get significant. 

• Toroids are not always optimal 



Class D and EMI 

Sensitive item 2: The inductor. 

• Ferrite inductors: avoid direct capacitive coupling 

between windings 
 

 

 

 

 

 

 

• “Hot” end sees “Cold” end 

• 2 layers is worst case situation 

• 1 layer is best 



Class D and EMI 

Sensitive item 3: The PCB layout. 

• Contiguous ground plane 

• Keep connectors together 

 

 

 

 

 

• Avoid capacitive coupling to external parts 

• Minimize loop area (≠short traces) 



Class D and EMI 

Checking for EMI without Spectrum Analyser 

• Just probe around the external connections with a 

scope!!! 

• If you see rubbish, there is rubbish 

• The higher the frequency, the more you should worry 



Class D and EMI 

Example: Amplifier A, rated 160W 

DC in 

Line In 

Out 

LPF 

FETs 

Plane Split 



Class D and EMI 

Amplifier A, one output line 

• 1V/div. Probe clip at RCA ground.  



Class D and EMI 

Amplifier A, common mode 

• 500mV/div. Amp is claimed to pass FCC??? 



Class D and EMI 

Amplifier A, differential mode 

• 500mV/div. Note: relatively clean. 



Class D and EMI 

Example: Amplifier B, rated 2kW 

DC in 

Line in 

Out 

Power stage 

LPF 



Class D and EMI 

Amplifier B, common mode 

• 250mV/div. Probe clip at power GND faston tab 

 



Class D and EMI 

Amplifier B, differential mode 

• 500mV/div. 



Class D and EMI 

Class D EMI is no mystery 

• Eyeballing components and PCB gives good indication 

• Invest in an analogue scope 

• Don’t bother EMC testing if the scope pic isn’t squeaky 

clean 

Next on: SMPS 



Specifying SMPS for Audio 

The complaint 

• “I need a 2kW amp to do what a 1kW amp would do in 

the old days” 

• “It sounds great with some sources and sux with others” 



Specifying SMPS for Audio 

Power Handling of COTS SMPS 

• Protection limit = Peak Rating = DC rating 

• Thermal design for rated output 

• Protection = constant current, foldback or stop 

 



Specifying SMPS for Audio 

Power demand of resistive load 

• Peak current/voltage = 1.414x RMS 

• Peak power = 2x average (“RMS”) power 

 



Specifying SMPS for Audio 

Power demand of reactive load 

• Example impedance plot 

 



Specifying SMPS for Audio 

Power demand of reactive load 

• Worst case current pulse 

 



Specifying SMPS for Audio 

Power demand of reactive load 

• Maximum current pulse = 2x peak current in DC 

resistance! 

 

Reactive or resistive: 

• SMPS rating = amplifier rating is inadequate 

 



Specifying SMPS for Audio 

Practical set of requirements 

• Thermal design 
• 1/8Pr indefinitely (suggest 1/3Pr for pro) 

• Pr continuous for 5 minutes (IHF rating) 

 

• Protection 
• Constant-Power at 2x Pr 



Specifying SMPS for Audio 

EMI: Injected mains current 

• Getting clean rails is easy (differential mode) 

• Getting low CM noise is harder 

 



Specifying SMPS for Audio 

Y cap reduces CM noise voltage 

• CM current reduction is indirect 

• Increases coupling of mains-borne noise 



Specifying SMPS for Audio 

Leakage current exacerbates Pin-1 problem 

• Current enters circuit ground. 

• Circuit ground current includes return 
• You can’t just disconnect it (AES48 style). 

• Requires chassis connection at PSU output. 

• Creates additional layout challenges 



Specifying SMPS for Audio 

Additional EMI requirements for audio SMPS 

• Common mode voltage/current noise 

• Primary-to-secondary impedance 

 

Next on: Be Careful... 



“ID” in Audio: Successful Co-Development 

Nightmare story #1 

• Customer wanted 100W class D solution 

• Subcontracter had a fully working design that fit well 

• C insisted on using “metal core” boards (hybrid) 

• S made list of 8 technical issues that would definitely kill 

the project. 

• C said all problems would get resolved 

• All problems materialised, few got solved 

• Project failed. C’s project manager resigned 

 

What went wrong? 
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“ID” in Audio: Successful Co-Development 

Nightmare story #1 

• Customer wanted 100W class D solution 

• Subcontracter had a fully working design that fit well 

• C insisted on using “metal core” boards (hybrid) 

• S made list of 8 technical issues that would definitely kill 

the project. 

• C said all problems would get resolved 

• All problems materialised, few got solved 

• Project failed. C’s project manager resigned 

 

Customer specified how, not what 

Customer could not justifiably make this judgment! 



“ID” in Audio: Successful Co-Development 

Nightmare Story #2 

• C wants high-end class D amplifier... 
• that does not use feedback 

• that processes DSD... 

• ...with no alteration 

• S produces a highly complex but working prototype 

• C thanks S and starts product development cycle. 
• Layout gets changed 

• Clock distribution gets changed 

... 

• Project fails as C can’t debug a buck regulator circuit... 

What went wrong? 
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“ID” in Audio: Successful Co-Development 

Nightmare Story #2 

• C wants high-end class D amplifier... 
• that does not use feedback 

• that processes DSD... 

• ...with no alteration 

• S produces a highly complex but working prototype 

• C thanks S and starts product development cycle. 
• Layout gets changed 

• Clock distribution gets changed 

... 

• Project fails as C can’t debug a buck regulator circuit... 

C specifies how, not what 

C overestimates self / underestimates problem 



“ID” in Audio: Successful Co-Development 

Outset 

• Customer has needs 

• Subcontractor has capabilities 

 

Potential problem 

• Perceived overlap of competences 

(Real overlap of actual competences is not a problem) 

 

Failure modes 

• Customer overestimates what they can do themselves 

• Customer specifies implementation details 

• Subcontractor meddles in customer’s work. 



“ID” in Audio: Successful Co-Development 

Success Story 

• C wants DSP/amplifier electronics for loudspeaker 

• C and S agree “black box” spec 

• S designs electronics 

• C designs acoustics and filters 
• Politely refuses S’ spontaneous input (“that’s our problem”) 

• Both parties finish in time, product is well received. 



“ID” in Audio: Successful Co-Development 

Critical steps for the Subcontractor: 

• Agree and insist on responsibilities 

• Avoid inept customers 

• Refuse paper-only gigs 

• Charge for spec changes once the design is underway 



“ID” in Audio: Successful Co-Development 

Critical steps for the Customer: 

• Hire expertise, accept expertise. 

• Write “black box” performance spec 
• Performance is judged with the box closed and the power on. 

• “Subjective sound quality” is a black box spec too. 

• Type of circuit or parts is not a performance spec. 

 



“ID” in Audio: Successful Co-Development 

The Two Roads 

 

The Road To Hell: 

 Specify the Design, Accept the Performance. 

 

The Road To Heaven: 

 Specify the Performance, Accept the Design. 



Thank you! 

recforums.prosoundweb.com 


